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1. Introduction

Analytical methods can provide an in-depth understanding of a whole class of structures that is not afforded by numerical
solutions. In the first part of our study (Zhang et al., 2009), the (prestress) stability of the symmetric prismatic tensegrity
structures has been investigated to show that connectivity of horizontal and vertical cables and the ratio of height to radius
are critical to stability, using analytical symmetry-adapted (block-diagonal) matrices. This paper presents the analytical for-
mulations of these matrices in a direct manner, based on group representation theory.

Stability, prestress stability and super stability are three stability criteria used for tensegrity structures. Among these, sta-
bility indicates positive definiteness of the tangent stiffness matrix K, which, as in Part I, or Guest (2006), can be written as
K ¼ AbGAT þ S; ð1Þ
where A is the equilibrium matrix, S is the geometrical stiffness matrix, and bG is a diagonal matrix containing modified axial
stiffnesses of members. Prestress stability is a simplified version of stability, where members are assumed to be rigid; equiv-
alently they have infinite stiffness. A structure is said to be prestress stable when the reduced stiffness matrix Q, defined as
the quadratic form of the geometrical stiffness matrix S with respect to the mechanisms M, is positive definite:
Q ¼MTSM; ð2Þ
where columns of M are first-order mechanisms of the structure lying in the null-space of AT. Super stability is superior to
stability and prestress stability – a super stable structure is (prestress) stable, and furthermore, any ‘stretched’ version of
it is also super stable. Connelly (1999) and Zhang and Ohsaki (2007) have discussed the conditions for super stability of a
tensegrity structure: positive semi-definiteness of the geometrical stiffness matrix S is a necessary condition.
. All rights reserved.
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For a structure with m nodes in d-dimensions, S is an md-by-md matrix. It can be written in terms of a simpler m-by-m
force density matrix E, using the Kronecher product (�) with a d-by-d identity matrix I

d�d
:

S ¼ I
d�d
�E; ð3Þ
if the coordinates are written as [. . .,xi,xi+1, . . .,yi,yi+1, . . .,zi,zi+1, . . .]T. Thus, for each eigenvalue of E, there will be d copies of
that eigenvalue for S, and the positive definiteness of S can be verified by that of E.

The positive definiteness of a matrix can be verified by investigating the sign of its smallest eigenvalue: the matrix is po-
sitive definite if its smallest eigenvalue is positive, and is positive semi-definite if it is equal to zero. Since the size of the
stiffness matrix increases in proportion to the number of nodes, eigenvalue analysis of the matrices will be more time con-
suming when the structure becomes more complex. However, for symmetric structures, there is a systematic way to reduce
the computational cost by transforming the current (internal and external) coordinate systems into symmetry-adapted sys-
tems. In this way, the matrices are rewritten in a symmetry-adapted, block-diagonal form: independent blocks are located
on the leading diagonal. As the eigenvalues of a matrix are not changed by a transformation of coordinate system, the po-
sitive definiteness of a matrix can be verified by considering the eigenvalues of its independent blocks, which are of smaller
dimension than the original matrix.

There are a number of methods to block-diagonalise the matrices for symmetric structures (see, for example, Ikeda and
Murota, 1991; Ikeda et al., 1992; Kangwai et al., 1999): in these methods, the symmetry-adapted matrices are derived in a
numerical manner, using transformation matrices. However, one numerical transformation only deals with one specific
structure. In this paper, we present a direct strategy for deriving symmetry-adapted matrices in an analytical way for pris-
matic tensegrity structures with dihedral symmetry, and demonstrate that these formulations can deal with a whole class of
structures. These symmetry-adapted formulations were used to investigate the (prestress) stability of prismatic tensegrity
structures in the first part of this study (Zhang et al., 2009), and to present the super stability condition for dihedral ‘star’
tensegrity structures (Zhang et al., submitted for publication).

Following this section, the paper is organised as follows. Section 2 gives a brief introduction to group representation the-
ory, for the dihedral group in particular. Sections 3 and 4 respectively formulate the symmetry-adapted force density matrix
and geometrical stiffness matrix; the symmetry-adapted force density matrix is used to obtain conditions for self-equilib-
rium and super stability of prismatic tensegrity structures. The symmetry-adapted equilibrium matrix is presented in Sec-
tion 5, using the concept of unitary member direction; and symmetry-adapted mechanisms are then derived from its
transpose. Section 6 briefly discusses and concludes the study.

2. Group and matrix representation

Symmetry of a structure can be systematically dealt with by group representation theory. To prepare for the symmetry-
adapted formulations in the coming sections, some basic concepts of group and its matrix representation are briefly intro-
duced in this section.

2.1. Group

A group is defined by a set of elements and the combination rules between these elements, satisfying the following four
general criteria (Kettle, 1995; Bishop, 1973):

(1) Closure: any two elements of the group must combine to give an element that is also a member of the group.
(2) Associativity: the associative law of combination must be satisfied.
(3) Identity: the group must contain an element, called identity element, that commutes with all the other elements and

also leaves them unchanged.
(4) Inverse: the inverse of every element in the group is also a member of the group.

The order of a group denotes the number of elements in it. In a description of the symmetry properties of a structure, the
elements are called symmetry operations. A symmetry operation is an operation which moves the structure in such a way that
its final position is physically indistinguishable from its initial position. If there is at least one point (called the central point)
in the structure that does not change its position by any symmetry operations of a group, that group is called a point group.
There are five different types of symmetry operation in a point group: (1) identity, (2) rotation about an axis, (3) reflection in
a plane, (4) improper rotation (rotation about an axis followed by reflection in a plane perpendicular to the rotation axis, (5)
inversion (reflection through a central point; equivalently an improper rotation by p about any axis).

The prismatic tensegrity structures that are of interest in this study, such as the structure shown in Fig. 1, have dihedral
symmetry: they are unchanged by any of the symmetry operations in the dihedral group Dn. The dihedral group is a point
group, and consists of: (1) the identity operation Eð� C0

nÞ; ð2Þn� 1 rotation operations Ci
nði 2 f1; . . . ;n� 1gÞ about a principal

axis; and (3) n 2-fold rotation operations C2,i(i 2 {0, . . .,n � 1}) about axes perpendicular to the principal axis. The order of a
dihedral group Dn is 2n. For convenience, we take the z-axis of the Cartesian coordinate system as the principal axis, and take
the origin as the central point of the group.

A prismatic tensegrity structure with Dn symmetry consists of 2n nodes, 2n horizontal cables, n vertical cables and n
struts. We assign that cables carry tension and struts carry compression. Nodes of a prismatic structure lie in two parallel
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Fig. 1. The simplest three-dimensional tensegrity, a prismatic tensegrity structure with D3 dihedral symmetry. The group D3 has six symmetry operations:
the identity, rotation by 2p/3 and 4p/3 about the z-axis, and rotation by p/2 about the three axes C2,0, C2,1, C2,2. The structure consists of six nodes and six
horizontal cables having a one-to-one correspondence with symmetry operations, and three vertical cables and struts having one-to-two correspondence
with symmetry operations. (a) Top view. (b) Side view.
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planes; horizontal cables connect the nodes in the same plane, and vertical cables and struts connect those in different
planes. The nodes and horizontal cables have one-to-one correspondence to the symmetry operations of the group, while
the struts and vertical cables have one-to-two correspondence (Zhang et al., 2009).

2.2. Matrix representation

The group multiplication table describes combinations of two operations (elements) of a group. If a set of matrices obeys
the group multiplication table of a group, these matrices are said to form a matrix representation of that group. A matrix rep-
resentation that can be reduced to a linear combination (direct sum) of several matrix representations is called a reducible
matrix representation, otherwise, they form an irreducible matrix representation. Characters are defined as the traces of irre-
ducible representation matrices. They will be shown to be important in identifying the structures of symmetry-adapted
matrices. The characters of the irreducible representations for point symmetry groups can be found in books of character
tables, e.g., Altmann and Herzig (1994).

A dihedral group Dn has two or four one-dimensional irreducible matrix representations: for n odd, they are A1 and A2,
and for n even, they are A1, A2, B1 and B2. For n > 2, there are also p two-dimensional irreducible matrix representations
Ek(k = 1, . . .,p) where
Table 1
Irreduc

l

A1

A2

(B1)
(B2)

E1

Ek

Each ro
symme
p ¼
ðn� 1Þ=2; n odd
ðn� 2Þ=2; n even:

�
ð4Þ
The irreducible matrix representations of a dihedral group Dn are listed in Table 1. The one-dimensional matrix represen-
tations are unique, and their characters are the representation matrices themselves; characters of the two-dimensional rep-
resentations are also unique – 2Cik for the cyclic rotation Ci

n of Ek and zero for the 2-fold rotation C2,i, but there is some limited
choice for the representation matrices. The symbols x, y and z in the fourth column of Table 1 respectively stand for x-, y- and
z- coordinates, and Rx, Ry and Rz stand for rotations about these axes (Atkins et al., 1970). We will show in Section 3 that the
blocks of the symmetry-adapted force density matrix corresponding to the representations that stand for coordinates – A2

and E1 representations in the case of dihedral group – should be singular to ensure a non-degenerate configuration.
ible matrix representations Rl
i of the dihedral group Dn

Ci
n C2,i Notes

1 1
1 �1 z,Rz

(�1)i (�1)i n even
(�1)i (�1)(i+1) n even

Ci �Si
Si Ci

� �
Ci �Si
Si �Ci

� �
(x,y)(Rx,Ry)

Cik �Sik
Sik Cik

� �
Cik Sik
Sik �Cik

� �
k 2 {2, . . .,p}

Rl
i Rl

nþi

w corresponds to a representation l of the group. Cik and Sik respectively denote cos(2ikp/n) and sin(2ikp/n). x, y, z and Rx, Ry, Rz respectively stand for
try operations of the corresponding coordinates and rotations about those axes.
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3. Symmetry-adapted force density matrix

This section presents a direct strategy to find the symmetry-adapted force density matrix: sub-blocks of the matrix are
written as sums of the products of force densities and the corresponding irreducible representation matrices. This analytical
formulation significantly simplifies the self-equilibrium analysis and makes it possible to obtain super stability conditions
(equivalent to those found by Connelly and Terrell (1995)) for the whole class of prismatic tensegrity structures.

3.1. Force density matrix

Every node of a prismatic tensegrity structure is connected by three different types of member: two horizontal cables, one
vertical cable and one strut; and each type of member has the same self-stress and length. The nodes in the top plane of the
structure are numbered from 0 to n � 1, and those in the bottom are n to 2n � 1. Node N0 in the top plane is connected to
nodes Nh and Nn�h by horizontal cables, to node Nn by a strut and to Nn+v by a vertical cable: the parameters h and v are
respectively used to describe connectivity of the horizontal and vertical cables of the structure. The members connected
to other nodes can be determined by applying symmetry operations. We label a prismatic structure with Dn symmetry
and connectivity of h and v as Dh;v

n : for example, the structure in Fig. 1 is denoted as D1;1
3 .

Let qh, qv and qs denote the force densities (self-stress to length ratios) of horizontal cables, vertical cables and struts, respectively.
Let I denote the set of members connected to node i. The (i, j)-component E(i,j) of the force density matrix E 2 R2n�2n is given as
Eði;jÞ ¼

P
k�I

qk for i ¼ j;

�qk if nodes i and j are connected by member k;
0 for other cases:

8><>: ð5Þ
Denoting q = 2qh + qs + qv, E can be written as follows from the numbering and connectivity of nodes
E ¼ qR0 � qhRh � qhRn�h � qsRn � qvRnþv: ð6Þ

Define I as an n-by-n matrix, of which the (j + 1)-th entry in the j-th row is one while other entries in that row are zero. Thus,
the matrices Ri(i 2 {0,h,n � h,n,n + v}) are given by
Ri ¼ ðIiÞT O
O Ii

� �
; for 0 6 i < n;

Ri ¼ O Ii�n

ðIi�nÞT O

� �
; for n 6 i < 2n;

ð7Þ
where O is an n-by-n null matrix; i in �Ii is the power number, thus �I0 is the n-by-n identity matrix.
Consider for example, the simplest three-dimensional prismatic tensegrity structure D1;1

3 as shown in Fig. 1. The matrix I is
I ¼
0 1 0
0 0 1
1 0 0

264
375;
and the force density matrix E is



Table 2
Traces o

i
Trace(R
lnoper

A1

A2

(B1)
(B2)
Ek
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mmetry-adapted formulation
3.2. Sy

In this subsection, we present the direct formulation of the symmetry-adapted force density matrix.
Using R1 and Rn as generators, Ri can be written as
Ri ¼ Rjþns ¼ ðR1ÞjðRnÞs; with 0 6 j < n and s 2 f0;1g: ð8Þ
Thus, the matrices Ri(i = 0, . . .,2n � 1) form a regular matrix representation of the dihedral group Dn, since their products
obey the multiplication table of Dn. Moreover, they are reducible and can be rewritten as direct sum of the irreducible rep-
resentation matrices: their traces indicate how many copies of each irreducible representation matrices are involved (Kettle,
1995).

Traces of the reducible representation matrices Ri corresponding to each symmetry operation are listed in Table 2 and
summarised in C(E):
CðEÞ ¼ f2n;0; . . . ;0; 0; . . . ; 0g: ð9Þ
From characters of the irreducible matrices of dihedral group listed in Table 2, the reducible representation of the nodes can
be written as a linear combination C(E) of the irreducible representations in a general form as follows
CðEÞ ¼ A1 þ A2 þ ðB1 þ B2Þ þ 2
Xp

k¼1

Ek: ð10Þ
We use ð~�) to denote the symmetry-adapted form of a matrix. C(E) characterises the structure of the symmetry-adapted force
density matrix eE:

(1) The number of the representation l in C(E) indicates dimensions of eEl. Hence, the blocks corresponding to the one-
dimensional representations are 1-by-1 matrices, and those of two-dimensional representations are 2-by-2 matrices.

(2) The dimensions of a representation indicate the number of times its corresponding block appears in the symmetry-
adapted form; thus, each one-dimensional representation has only one copy, and each two-dimensional representa-
tion has two copies of blocks all lying along the leading diagonal of eE.

In summary, the structure of eE can be written in a general form as follows
ð11Þ
where the blocks eEB1 and eEB2 corresponding to representations B1 and B2 exist only if n is even.
In conventional methods, eE is obtained using the unitary transformation matrix T 2 R2n�2n:
eE ¼ TETT; ð12Þ
f the reducible representation matrices Ri, and characters of the irreducible representation matrices of dihedral group Dn

0 1 j n � 1 n n + 1 n + j 2n � 1
i) 2n 0 0 0 0 0 0 0

ation E C1
n Cj

n Cn�1
n C2,0 C2,1 C2,j C2,n�1

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 �1 (�1)j (�1)n 1 �1 (�1)J (�1)n

1 �1 (�1)j (�1)n 1 �1 (�1)j+1 (�1)n+1

1 Ck Cjk C(n�1)k 0 0 0 0
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where TTT is an identity matrix:
TTT ¼ I
2n�2n

: ð13Þ
Rather than forming the transformation matrices T, the block diagonal form of eE can be found directly using Lemma 1 below.

Lemma 1. The block eEl corresponding to representation l of the symmetry-adapted force density matrix eE can be written in a
general form as
eEl ¼ qRl

0 � qhRl
h � qhRl

n�h � qsR
l
n � qvRl

nþv: ð14Þ
Proof. Since the matrices Ri (i = 0, . . .,2n � 1) defined in Eq. (7) or (8) form a regular matrix representation of the dihedral
group Dn, they can be written in the symmetry-adapted form as follows from Eq. (10) (Kettle, 1995)
Ri ¼ RA1
i � RA2

i ð�RB1
i � RB2

i Þ � 2
XP

k¼1

REk
i :
Hence, the force density matrix E can be written in a block-diagonal form as follows from its definition in Eq. (6)
eEl ¼ qRl
0 � qhRl

h � qhRl
n�h � qsR

l
n � qvRl

nþv;
which proves the lemma. h
3.3. Self-equilibrated configuration and super stability

To ensure a non-degenerate tensegrity structure in three-dimensional space, the force density matrix E (or equivalentlyeE) should have rank deficiency of at least four (Connelly, 1982; Zhang and Ohsaki, 2006). Rank deficiency of a symmetric
matrix can be calculated by finding the number of zero eigenvalues, and we should do this on a block by block basis for eE.

From Eq. (14), the block eEA1 is always equal to zero, as all representation matrices RA1
i are equal to 1, and q = 2qh + qs + qv:
eEA1 ¼ qRA1

0 � qhRA1
h � qhRA1

n�h � qsR
A1
n � qvRA1

Nþv ¼ q� 2qh � qs � qv ¼ 0: ð15Þ
The other three zero eigenvalues will come from eEA2 and the two copies of eEE1 , because A2 and E1 are representations of the
transformation of z-and xy-coordinates, as noted in Table 1. Substituting from Eq. (14) and Table 3 gives
eEA2 ¼ q� qh � qh � qsð�1Þ � qvð�1Þ ¼ 2ðqs þ qvÞ; ð16Þ
and � � � � � � � � � �
eEE1 ¼ q
1 0
0 1

� qh

Ch �Sh

Sh Ch
� qh

Cn�h �Sn�h

Sn�h Cn�h
� qs

1 0
0 �1

� qv

Cv sv

Sv �Cv

¼ 2qh

1� Ch 0
0 1� Ch

� �
þ qs

0 0
0 2

� �
þ qv

1� Cv �Sv

�Sv 1þ Cv

� �
:

ð17Þ
To ensure that eEA2 and eEE1 are rank deficient, we require
detðeEA2 Þ ¼ 0 and detðeEE1 Þ ¼ 0; ð18Þ
where det(�) denotes determinant of a matrix. These conditions are met if the relations between the force densities of dif-
ferent types of members are given by
qv ¼ �qs;
qh

qv
¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2Cv
p

2ð1� ChÞ
: ð19Þ
Note that qv and qh are positive as cables carry tension (positive self-stress). The solution obtained here agrees with that by
Connelly and Terrell (1995).

Using the force densities in Eq. (19), Eq. (14) can be rewritten as

1
qv

eEl ¼ 2tRl
0 � tRl

h � tRl
n�h þ Rl

n � Rl
nþv; with t ¼ qh=qv: ð20Þ
Eq. (19) can necessarily ensure a three-dimensional self-equilibrium configuration for a prismatic tensegrity structure,
since eEA2 and eEE1 are singular. However, there is no guarantee that the structure is stable. To ensure the stability of the struc-
ture, we also need to investigate the positive definiteness of the other blocks.

From Eq. (20), the blocks eEB1 and eEB2 of representations B1 and B2 (when they exist, for n even) are
1
qv

eEB1 ¼ ð2� ð�1Þh � ð�1Þn�hÞt þ 1� ð�1Þv

1
qv

eEB2 ¼ ð2� ð�1Þh � ð�1Þn�hÞt � 1þ ð�1Þv;
ð21Þ



Table 3
Selected irreducible representation matrices corresponding to the nodes connecting to node N0

l Identity Horizontal cable Strut Vertical

Rl
0 Rl

h Rl
n�h Rl

n Rl
nþv

A1 1 1 1 1 1
A2 1 1 1 �1 �1
B1 1 (�1)h (�1)n�h 1 (�1)v

B2 1 (�1)h (�1)n�h �1 (�1)v+1

Ek
1 0
0 1

� �
Chk �Shk
Shk Chk

� �
Chk Shk
�Shk Chk

� �
1 0
0 �1

� �
Cvk Svk
Svk �Cvk

� �
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and the two-dimensional blocks eEEk (k = 1, . . .,p) are
1
qv

eEEk ¼
2tð1� ChkÞ þ 1� Cvk �Svk

�Svk 2tð1� ChkÞ � ð1� CvkÞ

� �
: ð22Þ
The two eigenvalues of eEEk are
kEk
1

qv
¼ 2tð1� ChkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvkÞ

p
;

kEk
2

qv
¼ 2tð1� ChkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvkÞ

p
: ð23Þ
kEk
1 > 0 holds since t > 0, 1 � Chk > 0 and 1 � Cvk > 0. For representation E1, we know from Eq. (19) that kE1

2 ¼ 0. To satisfy po-
sitive semi-definiteness and minimum rank deficiency of the force density matrix, which are the two sufficient conditions for
super stability of tensegrity structures (Connelly, 1999; Zhang and Ohsaki, 2007), kEk

2 for k > 1 should be positive. Connelly
and Terrell (1995) obtained the same two-dimensional blocks making use of the special properties of the force density ma-
trix as a circulant matrix, and further proved that all other two-dimensional blocks (for k > 1) are positive definite if and only
if h = 1; i.e., horizontal cables are connected to adjacent nodes.

To confirm that h = 1 is the super stability condition for prismatic tensegrity structures, we need to investigate the one-
dimensional blocks: eEA1 ¼ eEA2 ¼ 0 always holds as discussed previously; and eEB1 and eEB2 exist only when n is even, for which
we have the following relation from Eq. (21) for h = 1
1
qv

eEB1 ¼ ð2� ð�1Þh � ð�1Þn�hÞt þ 1� ð�1Þv ¼ 4t þ 1� ð�1Þv P 4t > 0;

1
qv

eEB2 ¼ ð2� ð�1Þh � ð�1Þn�hÞt � 1þ ð�1Þv ¼ 4t � 1� ð�1Þv

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2Cv
p

1� C1
� 1� ð�1Þv P 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2C1
p

1� C1
� 1� ð�1Þ1 ¼ 2

ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C1
p � 2 > 0:
In summary, h = 1 guarantees the two sufficient conditions for super stability of a prismatic tensegrity structure: its force
density matrix has rank deficiency of four (one in eEA1 , one in eEA2 and two in the two copies of eEE1 ), which is the minimum
value for a non-degenerate structure in three-dimensional space; and the force density matrix is positive semi-definite.

4. Symmetry-adapted geometrical stiffness matrix

In this section, we present a direct strategy to find the symmetry-adapted geometrical stiffness matrix, which is used in
Part I to investigate prestress stability of the structures.

As any node of a symmetric prismatic tensegrity structure is transformed to a different node by any symmetry operation
of Dn except for the identity operation, by which all (in total 2n) nodes remain unchanged, the traces of permutation matrices
for nodes are summarised as follows (Fowler and Guest, 2000)
CðNÞ ¼ f2n; 0; . . . ; 0; 0; . . . ;0g ¼ A1 þ A2 þ ðB1 þ B2Þ þ 2
Xp

k¼1

Ek; ð24Þ
which has the same linear combination of irreducible representations as C(E). Hence, the permutation matrices for nodes
can be block-diagonalised in the same form as Ri.

A representation of nodal coordinates of the tensegrity C(D) in the external coordinate system can be found from the per-
mutation representation of the nodes C(N), multiplied by the representation of displacements of a single node, C(T) = E1 + A2

(noted in Table 1)
CðDÞ ¼ CðNÞ � CðTÞ ¼ A1 þ A2 þ ðB1 þ B2Þ þ 2
Xp

k¼1

Ek

 !
� ðE1 þ A2Þ ¼ 3A1 þ 3A2 þ ð3B1 þ 3B2Þ þ 6

Xp

k¼1

Ek; ð25Þ
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where � denotes direct product (tables of the direct product of two representations of the dihedral group can be found in
many textbooks on group representation theory, e.g., the book by Atkins et al. (1970)). Similar to C(E), C(D) in Eq. (25)
characterises the structure of the symmetry-adapted geometrical stiffness matrix eS: the blocks corresponding to the one-
and two-dimensional representations are 3-by-3 and 6-by-6 matrices, respectively.

From Eq. (25), the reducible representation matrix Rl
i of the i-th symmetry operation for nodal coordinates can be for-

mulated as follows, using the direct sum of irreducible matrices of E1 and A2:
Table 4
Reducib

N0 ¼

24

Nn ¼

24
Rl
i ¼ Rl

i �
RE1

i 0

O RA2
i

" #
¼ Rl

i � Ni; ð26Þ
where Ni for i 2 {0,h,n � h,n,n + v} are listed in Table 4.
Similar to the symmetry-adapted force density matrix, we have the following lemma for the symmetry-adapted geomet-

rical stiffness matrix eS.

Lemma 2. The blocks eSl of the symmetry-adapted geometrical stiffness matrix eS, corresponding to the representation l, can be
written in a general form as
1
qv

eSl ¼ 2tRl
0 � tRl

h � tRl
n�h þ Rl

n � Rl
nþv: ð27Þ
Proof. As shown in Eq. (25), the representation of nodal coordinates C(D) is the multiplication of that of permutation rep-
resentation of nodes C(N) and that of displacements of a single node C(T); moreover, the permutation matrices of nodes can
be block-digonalised in the same form as Rl

i . Hence, the symmetry-adapted geometrical stiffness matrix corresponding to
the irreducible representation l can be found as follows
1
qv

eSl ¼ 2tRl
0 � tRl

h � tRl
n�h þ Rl

n � Rl
nþv;
where Rl
i is Kronecher product of the irreducible representation matrix of the permutation of nodes Rl

i and the reducible
representation matrix of the coordinates of a single node Ni as defined in Eq. (26).

Thus, the lemma is proved. �

From Eq. (27), the blocks eSA1 and eSA2 can be written as
1
qv

eSA1 ¼
2tð1� ChÞ þ 1� Cv �Sv 0

�Sv 2tð1� ChÞ � 1þ Cv 0
0 0 0

264
375

1
qv

eSA2 ¼
2tð1� ChÞ � 1þ Cv Sv 0

Sv 2tð1� ChÞ þ 1� Cv 0
0 0 0

264
375: ð28Þ
It is easy to verify that the eigenvalues of eSA1 are those of ðeEE1 � 2bEA2 Þ; similarly, the eigenvalues of bSA1 are those of
ðeEE1 � 2bEA1 Þ, which follows from
A1 � ðE1 þ A2Þ ¼ E1 þ A2

A2 � ðE1 þ A2Þ ¼ E1 þ A1
ð29Þ
In a similar way, relationships between the eigenvalues of symmetry-adapted forms of the force density matrix and the geo-
metrical stiffness matrices are summarised in Table 5.

Blocks eSB1 and eSB2 , when they exist, for n even, are given by
1
qv

eSB1 ¼
/1 ð�1Þvþ1Sv 0

ð�1Þvþ1 /2 0
0 0 /3

264
375

1
qv

eSB2 ¼
/4 ð�1ÞvSv 0
ð�1Þv /5 0

0 0 /6

264
375; ð30Þ
le representation matrices for external coordinate system

1 0 0
0 1 0
0 0 1

35 Nh ¼
Ch �Sh 0
Sh Ch 0
0 0 1

24 35 Nn�h ¼
Ch Sh 0
�Sh Ch 0
0 0 1

24 35
1 0 0
0 �1 0
0 0 �1

35 Nnþv ¼
Cv Sv 0
Sv �Cv 0
0 0 �1

24 35



Table 5
Relationships between eigenvalues of symmetry-adapted forms of the geometrical stiffness matrix and the force density matrix

eSl eEl n

3A1 A2 E1

3A2 A1 E1

3B1 B2 Ep Even
3B2 B1 Ep Even
6E1 A1 A2 E1 E2

6Ek Ek�1 Ek Ek+1

6Ep Ep�1 2Ep Odd
6Ep B1 B2 Ep�1 Ep Even
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where
/1 ¼ 2tð1� ð�1ÞhChÞ þ 1� ð�1ÞvCv /2 ¼ 2tð1� ð�1ÞhChÞ � 1þ ð�1ÞvCv

/3 ¼ 2tð1� ð�1ÞhÞ � 1þ ð�1Þv /4 ¼ 2tð1� ð�1ÞhChÞ þ 1þ ð�1ÞvCv

/5 ¼ 2tð1� ð�1ÞhChÞ � 1� ð�1ÞvCv /6 ¼ 2tð1� ð�1ÞhÞ � 1� ð�1Þv:

ð31Þ
And blocks eSEk of the two-dimensional representations Ek are given by
1
qv

eSEk ¼

u1 þu2 �u3 0 �u4 �u5 �u6 0
�u3 u1 �u2 0 u5 �u6 u4 0

0 0 u7 �u8 0 u9

�u4 u5 �u6 0 u1 �u2 u3 0
�u5 �u6 u4 0 u3 u1 þu2 0

0 u9 0 0 u7 þu8

2666666664

3777777775
; ð32Þ
where
u1 ¼ 2tð1� ChChkÞ u2 ¼ 1� CvCvk u3 ¼ SvCvk

u4 ¼ CvSvk u5 ¼ 2tShShk u6 ¼ SvSvk

u7 ¼ 2tð1� ChkÞ u8 ¼ 1� Cvk u9 ¼ Svk: ð33Þ
5. Symmetry-adapted equilibrium matrix

This section presents the symmetry-adapted equilibrium matrix eA and the mechanisms fM lying in the null-space of its
transpose eAT.

5.1. Block structure

Unlike the force density matrix E or the geometrical stiffness matrix S, the equilibrium matrix A 2 R6n�4n of a prismatic
tensegrity structure is not square. In conventional methods, the symmetry-adapted equilibrium matrix eA can be computed
as follows using the transformation matrices TD and TM respectively for external and internal coordinate systems (see, for
example, Kangwai and Guest (2000))
eA

6n�4n
¼ TD

6n�4n
Að TM

6n�4n
ÞT: ð34Þ
To make clear the structure of eA, we initially investigate linear combination of representations of its members (internal
coordinates). Using tables of characters similar to those in Kangwai and Guest (2000), it should be noted that different types
of members cannot be transformed to each other by any symmetry operation. Thus, the horizontal cables, struts and vertical
cables should be considered separately.

Tables 6–8 show the numbers of members unshifted by each symmetry operation. Each linear combination of represen-
tations is also written in terms of irreducible representations. C(M) is the linear combination of representations for all mem-
bers, C(M) = C(Mh) + C(Ms) + C(Mv) where C(Mh),C(Ms) and C(Mv) are those for horizontal cables, struts and vertical cables,
respectively. The tables are formulated separately for n odd (see for example Fig. 2); n even and v odd (see for example
Fig. 3(a)); n even and v even (see for example Fig. 3(b)).

Based on C(M) and C(D), we can describe the size of the blocks in the symmetry-adapted equilibrium matrix eA. There are
a blocks for each a-dimensional irreducible representation. The number of rows of a (block) matrix is given by the coefficient
on the corresponding representation in C(D), and the number of columns by the coefficient in C(M). Thus, for example, the
A1 block eAA1 is a 3-by-3 matrix, because there are three A1 representations in both of C(D) and C(M). Furthermore, columns



Table 6
The linear combination of representations of members for n odd

E Ci
n C2,i Representation

C(Mh) 2n 0 0 A1 þ A2 þ 2
Pp

k¼1Ek

+C(Ms) n 0 1 A1 þ
Pp

k¼1Ek

+C(Mv) n 0 1 A1 þ
Pp

k¼1Ek

= C(M) 3A1 þ A2 þ 4
Pp

k¼1Ek

Table 7
The linear combination of representations of members for n even and v odd

E Ci
n C2,2i C2,2i+1 Representation

C(Mh) 2n 0 0 0 A1 þ A2 þ B1 þ B2 þ 2
Pp

k¼1Ek

+C(Ms) n 0 2 0 A1 þ B1 þ
Pp

k¼1Ek

+C(Mv) n 0 0 2 A1 þ B2 þ
Pp

k¼1Ek

= C(M) 3A1 þ A2 þ 2B1 þ 2B2 þ 4
Pp

k¼1Ek

Table 8
The linear combination of representation of members for n even and v even

E Ci
n C2,2i C2,2i+1 Representation

C(Mh) 2n 0 0 0 A1 þ A2 þ B1 þ B2 þ 2
Pp

k¼1Ek

+C(Ms) n 0 2 0 A1 þ B1 þ
Pp

k¼1Ek

+C(Mv) n 0 2 0 A1 þ B1 þ
Pp

k¼1Ek

= C(M) 3A1 þ A2 þ 3B1 þ B2 þ 4
Pp

k¼1Ek
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of eAA1 come from the horizontal cables, struts and vertical cables separately, because all of C(Mh), C(Ms) and C(Mv) have one
representation A1. Similarly, eAA2 is a 3-by-1 matrix, and the only column comes from the horizontal cables because there is
no representation A2 for struts or vertical cables.
5.2. Representation of mechanisms

Following Fowler and Guest (2000), the shape of blocks of the equilibrium matrix gives information about mecha-
nisms and states of self-stress. Written in terms of the representation of mechanisms including rigid-body motions
C(m) and the self-stress C(s), we have C(m) � C(s) = C(D) � C(M). However, we have shown that the prismatic tenseg-
rity structures have only one mode of symmetric self-stress, thus C(s) = A1. Therefore, the representation of the mech-
anisms is
CðmÞ ¼ A1 þ CðDÞ � CðMÞ; ð35Þ
for v even
CðmÞ ¼ A1 þ ð3A1 þ 3A2 þ ð3B1 þ 3B2þÞ6
Xp

k¼1

EkÞ � ð3A1 þ A2þ ð2B1 þ 2B2þÞ4
Xp

k¼1

EkÞ ¼ A1 þ 2A2 þ ð2B2Þ þ 2
Xp

k¼1

Ek;
and for v odd
CðmÞ ¼ A1 þ ð3A1 þ 3A2 þ ð3B1 þ 3B2þÞ6
Xp

k¼1

EkÞ � ð3A1 þ A2 þ ð3B1 þ B2þÞ4
Xp

k¼1

EkÞ ¼ A1 þ 2A2 þ ðB1 þ B2Þ þ 2
Xp

k¼1

Ek;
Hence, there is one mechanism of A1 symmetry, two mechanisms of A2 symmetry and so on. In total, there are 2n + 1 mech-
anisms including the rigid-body motions.
5.3. Unitary member direction

The concept of unitary member direction introduced in this subsection has a vital role in deriving the symmetry-adapted
equilibrium matrix, and thus, infinitesimal mechanisms.
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Fig. 2. Structures Dh;v
n with n(=5) odd. One strut and one vertical cable remain unshifted by any 2-fold rotations, and all are shifted by any n-fold rotations

except the identity operation.
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Fig. 3. Structures Dh;v
n with n(=8) even. Two struts remain unshifted by a 2-fold rotation C2,2i, and all struts are shifted by C2,2i+1. For v odd, all vertical cables are

shifted by C2,2i, and two are unchanged by C2,2i+1. For v even, two vertical cables are unshifted by C2,2i. and all are shifted by C2,2i+1 (a) h = 1, v = 1 (b) h = 1, v = 2.
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The equilibrium matrix A can be formulated as follows (Zhang and Ohsaki, 2006)
A ¼
Ax

Ay

Az

264
375 ¼ CT UL�1

CT VL�1

CT WL�1

264
375; ð36Þ
where C 2 R4n�2n describes the connectivity of the structure; U, V and Wð2 R4n�4nÞ are diagonal matrices, in which the diag-
onal entries are coordinate differences in each of directions x, y and z; and L 2 R4n�4n is a diagonal matrix, of which diagonal
entries are member lengths. Hence, the diagonal entries of UL�1, VL�1, and WL�1 are the x, y and z components of the unitary
member directions.

When we apply transformation matrices to A to derive its symmetry-adapted form ~A, as in Eq. (34), we are thus actually
dealing with the unitary member directions, and in fact the symmetry-adapted equilibrium matrix can be directly derived
from these unitary member directions.

Consider a single reference node of the structure as shown in Fig. 4. The coordinate of the reference node can be written as
follows (Zhang et al., 2009)



dh

dn-h

dv
ds

Fig. 4. A single node of prismatic tensegrity structures with dihedral symmetry. The node is connected by two horizontal cables, one vertical cable and one
strut.
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X0 ¼
x0

y0

z0

264
375 ¼ Cv � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� CvÞ

p
Sv

H
2

264
375 ¼ 2Sv=2ð1� Sv=2Þ

Sv

H
2

264
375; ð37Þ
where H denotes height (-to-radius ratio) of the structure. Other nodes of the structure can be determined using symmetry
operations.

Denote the lengths of the strut, horizontal cable and vertical cable as ls, lh and lv, respectively. The unitary directions dh

and dn�h of the two horizontal cables connected to the reference node can be computed as
lhdh ¼ X0 � NhX0 ¼
x0 � Chx0 þ Shy0

y0 � Chy0 þ Shx0

0

264
375 ¼ 4Sh

2
Sv

2

Chþv
2
þ Sh

2

Shþv
2
� Ch

2

0

264
375; ð38Þ

lhdn�h ¼ X0 � Nn�hX0 ¼
x0 � Chx0 � Shy0

y0 � Chy0 þ Shx0

0

264
375 ¼ 4Sh

2
Sv

2

�Ch�v
2
þ Sh

2

Sh�v
2
þ Ch

2
:

0

264
375: ð39Þ
Thus,
dh þ dn�h ¼
8S2

h
2
Sv

2

lh

1� Sv
2

Cv
2

0

264
375 and dh � dn�h ¼

4ShSv
2

lh

Cv
2

Sv
2
� 1
0

264
375: ð40Þ
Unitary directions of the strut ds and vertical cable dv are
lsds ¼ X0 � NnX0 ¼
0

2y0

H

264
375 ¼ 0

2Sv

H

264
375;

lvdv ¼ X0 � NnþvX0 ¼
x0 � Cvx0 � Svy0

y0 þ Cvy0 � Svx0

H

264
375 ¼ 4Sv

2
ð1� Sv

2
Þ
�Sv

2

Cv
2

H

264
375; ð41Þ
where H ¼ H=½4Sv
2
ð1� Sv

2
Þ�.

5.4. Symmetry-adapted equilibrium matrix

Because horizontal cables have one-to-one correspondence with the symmetry operations of a dihedral group, its trans-
formation matrix hTl

M for a one-dimensional representation l can be defined as (Kettle, 1995)
hTl
M ¼

1ffiffiffiffiffiffi
2n
p ½Rl

0 ; . . . ;Rl
j ; . . . ;Rl

2n�1�: ð42Þ
Since the i-th and (n + i)-th (i = 2 {0, . . .,n � 1}) symmetry operations take the strut connected by nodes Ni and Nn+i to itself,
the transformation matrix sT

l
M for struts can be written as
sT
l
M ¼

1ffiffiffiffiffiffi
4n
p ½Rl

0 þ Rl
n ; . . . ;Rl

i þ Rl
nþi; . . . ;Rl

n�1 þ Rl
2n�1�; ð43Þ
and similarly, vTl
M for vertical cables is
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vTl
M ¼

1ffiffiffiffiffiffi
4n
p ½Rl

0 þ Rl
nþv; . . . ;Rl

i þ Rl
nþiþv; . . . ;Rl

n�1�v þ Rl
2n�1;R

l
n�v þ Rl

n ; . . . ;Rl
n�1 þ Rl

n�1þv�: ð44Þ
Note that there are 2n entries in hTl
M but only n entries in sT

l
M and vTl

M , which are identical to the number of the members.
For a two-dimensional representation Ek (k = 1, . . .,p), the transformation matrix hTEk

M 2 R4�2n for horizontal cables is given
as
hTEk
M ¼

1ffiffiffi
n
p

Rl
0 ð1;1Þ; . . . ;Rl

i ð1;1Þ; . . . ;Rl
2n�1ð1;1Þ

Rl
0 ð1;2Þ; . . . ;Rl

i ð1;2Þ; . . . ;Rl
2n�1ð1;2Þ

Rl
0 ð2;1Þ; . . . ;Rl

i ð2;1Þ; . . . ;Rl
2n�1ð2;1Þ

Rl
0 ð2;2Þ; . . . ;Rl

i ð2;2Þ; . . . ;Rl
2n�1ð2;2Þ

26664
37775 ¼ 1ffiffiffi

n
p

½Cik�; ½Cik�
�½Sik�; ½Sik�
½Sik�; ½Sik�
½Cik�; �½Cik�

26664
37775; ð45Þ
where [Cik] and ½Sik�ð2 RnÞ are row vectors
½Cik� ¼ ½C0; Ck; . . . ; Cik; . . . ;Cðn�1Þk�
½Sik� ¼ ½S0; Sk; . . . ; Sik; . . . ; Sðn�1Þk�; for i ¼ 0; . . . ;n� 1:
For the struts and vertical cables, the transformation matrices are written as follows
sT
Ek
M ¼

½Cjk þ Cjk�
�½Sjk þ Sjk�
½Sjk þ Sjk�
½Cjk þ ð�CjkÞ�

26664
37775 ¼

½2Cjk�
½0�
½2Sjk�
½0�

26664
37775;

vTEk
M ¼

½Cjk þ CðjþvÞk�
�½Sjk þ SðjþvÞk�
½Sjk þ SðjþvÞk�
½Cjk þ ð�CðjþvÞkÞ�

26664
37775 ¼ 2

½Cðjþ1
2vÞkCvk

2
�

�½Cðjþ1
2vÞkSvk

2
�

½Sðjþ1
2vÞkCvk

2
�

½Sðjþ1
2vÞkSvk

2
�

2666664

3777775 for j ¼ 0; . . . ;n� 1: ð46Þ
It is apparent that the first and the second rows, and the third and the fourth rows are dependent, hence, only the first and
the third rows are present in sT

Ek
M and hTl

Mð2 R2�nÞ, which are normalised as
sT
Ek
M ¼

1ffiffiffiffiffiffi
2n
p

½2Cjk�
½2Sjk�

� �
;

vTEk
M ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1þ CvkÞ

p ½Cjk þ CðjþvÞk�
½Sjk þ SðjþvÞk�

� �
for j ¼ 0; . . . ;n� 1: ð47Þ
The transformation matrix Tl
M of the members for the representation l can then be combined as
Tl
M ¼

hTl
M O O

O sT
l
M O

O O vTl
M

264
375; ð48Þ
and the transformation matrix TM 2 R4n�4n of the members for all representations can be further assembled as
TM ¼

TA1
M

TA2
M

..

.

TEp
M

2666664

3777775: ð49Þ
As indicated in the formulations of the equilibrium matrix A and its transformation matrices, components of its symme-
try-adapted form eA can be separately formulated for different types of members. Since horizontal cables have one-to-one
correspondence with symmetry operations, their symmetry-adapted components eAl

h for representation l can be directly
formulated as follows using its unitary member directions dh and dn�h
eAl

h ¼ Rl
0 � dh þ Rl

h � dn�h; ð50Þ
in a similar way to the formulation of the symmetry-adapted geometrical stiffness matrix presented in Section 4.
The symmetry-adapted components eAl

s of struts and eAl
v of vertical cables can be formulated in a manner similar to that of

horizontal cables in Eq. (50), as follows
eAl
s ¼

1
al

s
ðbRl

0 þ bRl
n Þ � ds and eAl

v ¼
1
al

v
ðbRl

v þ bRl
nþvÞ � dv; ð51Þ
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where al
s ¼ al

v ¼
ffiffiffi
2
p

for one-dimensional representations and al
s ¼

ffiffiffi
2
p

; al
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cvk
p

for two-dimensional representations,
to ensure correct normalisation. bRl

j is constructed from components of the irreducible representation matrix of Rl
j : for one-

dimensional representations bRl
j ¼ Rl

j , and for two-dimensional representations
bREk
j ¼

Cjk

Sjk

� �
: ð52Þ
For convenience, we write the symmetry-adapted components of all types of members corresponding to each represen-
tation l together in a form as
eAl ¼ eAl

h ;
eAl

s ; eAl
v

h i
: ð53Þ
Consider initially A1. Since all types of members have representation A1; eAA1 can be formulated as
eAA1 ¼ dh þ dn�h;
1þ1ffiffi

2
p ds;

1þ1ffiffi
2
p dv

h i
¼ dh þ dn�h;

ffiffiffi
2
p

ds;
ffiffiffi
2
p

dv

� �
: ð54Þ
eAA1 is singular with rank deficiency of one, and the infinitesimal mechanism lying in its transpose is
mA1 ¼
4S2

v
2

�1
1

264
375: ð55Þ
Now consider the block of the equilibrium matrix corresponding to irreducible representation A2. Only horizontal cables
have an A2 representation, thus
eAA2 ¼ ½dh þ dn�h� ¼
8S2

h
2
Sv

2

ln

1� Sv
2

Cv
2

0

264
375: ð56Þ
The mechanisms in its null-space are indeed the rigid-body motions, translation in and rotation about the z-axis, as indicated
in Table 1, and are found as follows
mA2

1 ¼
1þ Sv

2

�Cv
2

0

264
375 and mA2

2 ¼
0
0
1

264
375: ð57Þ
When n is even, the struts have representation B1; the horizontal cables have representation B1 for v odd and B2 for v even.
Hence, for n even and v odd, we have
eAB1 ¼ dh þ ð�1Þhdn�h;

ffiffiffi
2
p

ds

� �
and eAB2 ¼ dh þ ð�1Þhdn�h;

ffiffiffi
2
p

dv

� �
; ð58Þ
with infinitesimal mechanisms
mB1 ¼

Cv
2

Sv
2
þ 1

�
2SvðSv

2
þ1Þ

H

2664
3775 and mB2 ¼

Cv
2

Sv
2
þ 1

�
Svð1�Sv

2
Þ

H

2664
3775 for h odd; ð59Þ
and
mB1 ¼

1þ Sv
2

�Cv
2

2SvCv
2

H

2664
3775 and mB2 ¼

1þ Sv
2

�Cv
2

2SvCv
2
ð2Sv

2
�1Þ

H

2664
3775 for h even; ð60Þ
when both n and v are even, we have
eAB1 ¼ dh þ ð�1Þhdn�h;
ffiffiffi
2
p

ds;
ffiffiffi
2
p

dv

� �
and eAB2 ¼ ½dh þ ð�1Þhdn�h�; ð61Þ
with the infinitesimal mechanisms
mB2
1 ¼

Cv
2

Sv
2
þ 1

0

264
375 and mB2

2 ¼
0
0
1

264
375 for h odd; ð62Þ
and
mB2
1 ¼

1þ Sv
2

Cv
2

0

264
375 and mB2

2 ¼
0
0
1

264
375 for h even; ð63Þ
eAEk for a two-dimensional representation Ek is
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eAEk ¼ R0 � dh þ R0 � dn�h;
1ffiffi
2
p

C0 þ Cn

S0 þ Sn

� �
� ds;

1ffiffiffiffiffiffiffiffiffi
1þCvk

p C0 þ Cvk

S0 þ Svk

� �
� dv

� �
¼ 1 0

0 1

� �
� dh þ

Chk �Shk

Shk Chk

� �
� dn�h;

ffiffiffi
2
p C0

0

� �
� ds;

1ffiffiffiffiffiffiffiffiffi
1þCvk

p 1þ Cvk

Svk

� �
� dv

� �
;

ð64Þ
which can be written in a symbolic form as
eAEk ¼

e1 �e3 0 g1

e2 �e4 f1 g2

0 0 f2 g3

e3 e1 0 g4

e4 e2 0 g5

0 0 0 g6

2666666664

3777777775
; ð65Þ
where
e1 ¼ CðhþvÞ=2 þ Sh=2 þ Chkð�Cðh�vÞ=2 þ Sh=2Þ
e2 ¼ SðhþvÞ=2 � Ch=2 þ ChkðSðh�vÞ=2 þ Ch=2Þ
e3 ¼ ShkðCðh�vÞ=2 � Sh=2Þ
e4 ¼ �ShkðSðh�vÞ=2 þ Ch=2Þ
and
f1 ¼ 2Sv f2 ¼ H H ¼ H=½4Sv=2ð1� Sv=2Þ�
g1 ¼ �ð1þ CvkÞSv=2 g2 ¼ ð1þ CvkÞCv=2 g3 ¼ ð1þ CvkÞH
g4 ¼ �SvkSv=2 g5 ¼ SvkCv=2 g6 ¼ SvkH:
The infinitesimal mechanisms lying in the null-space of ðeAEk ÞT are
~mEk
1 ¼

g6ðe2e3 � e1e4Þ
0
0

�g6ðe1e2 þ e3e4Þ
g6ðe2

1 þ e2
3Þ

g4ðe1e2 þ e3e4Þ � g1ðe2e3 � e1e4Þ � g5ðe2
1 þ e2

3Þ

2666666664

3777777775
ð66Þ
and
~mEk
2 ¼

f2g6ðe1e2 þ e3e4Þ
�f2g6ðe2

1 þ e2
3Þ

f1g6ðe2
1 þ e2

3Þ
f2g6ð�e1e4 þ e2e3Þ

0
f2g4ðe1e4 � e2e3Þ � f2g1ðe1e2 þ e3e4Þ þ ðf2g2 � f1g3Þðe2

1 þ e2
3Þ

2666666664

3777777775
; ð67Þ
where
e2e3 � e1e4 ¼ 2ðSv=2 � 1Þð�ShkShÞ
e1e2 þ e3e4 ¼ �2ðSv=2 � 1ÞCv=2ðChk � ChÞ
e2

1 þ e2
3 ¼ 2ðSv=2 � 1Þ½ðChk � ChÞðSv=2 þ ChÞ � S2

h�:
6. Conclusions

This study shows that symmetry allows simple analytical formulations to be calculated for the study of the mechanics of a
whole class of structure. The formulations have been used directly in Part I (Zhang et al., 2009) to understand the stability of
prismatic tensegrity structures. They have also been used in Zhang et al. (submitted for publication) to study the stability of
dihedral ‘star’ tensegrity structures.

The methodology in this paper can be applied to any other class of symmetric structure.
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